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ABSTRACT 

The application of the dyadic Green's function technique 

to a number of electromagnetic problems involving a perfectly 

conducting half-plane sheet is discussed.  A derivation of the 

dyadic Green's function is given by the method of Fourier and 

Hankel transforms.  Several sets of curves have been presented 

to show the radiation patterns in the principal plane for 

different excitations.  The radiation resistance ol a quarter- 

wave monopole attached to the edge of a half-plane sheet, and 

that of a half-wave dipole placed parallel to the edge of the 

sheet are also evaluated. 

! 
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RADIATION FROM CURRENT ELEMENTS AND APERTURES 
IN THE PRESENCE OF A PERFECTLY CONDUCTING 

HALF-PLANE SHEET 

INTRODUCTION 

Among the boundary-value problems involving a perfectly conducting 

half-plane sheet, the problem of diffraction of a plane polarized wave 

was treated long ago by Sommerfeld  by applying the theory of multi-valued 

functions of a complex variable to the formulation of the problem.  The 

same problem can also be formulated and solved by using the Hopf-Wiener 

integral equation technique.  ■  In this report, problems involving dipoles 

and apertures as exciting sources will be discussed.  By applying the 

technique of dyadic Green's functions, the electromagnetic field due to 

electric and magnetic dipoles in the presence of a half plane sheet and 

the related problems involving apertures can be formulated in a compact 

manner.  For certain ranges of the parameters, corresponding to the far- 

zone region, the complex integral that represents the formal solution can 

be evaluated approximately by means of the saddle-point method of inte- 

gration to yield some pertinent information regarding the radiation pattern 

in the principal plane.  The radiation field can, of course, be obtained 

by applying the reciprocal theorem and making use of Sommerfeld"s solution. 

The method adopted here, however, seems to be more direct.  As a whole, the 

general formulation not only gives e better view of the relationship be- 

tween various problems but also provides a foundation for further investi- 

gation in subjects not covered in this work, particularly the near-zone 

field. 



II     DYADIC GREEN  S  FUNCTION PERTAINING TO A PERFECTLY 
CONDUCTING HALF-PLANE SHEET 

It   is  well   known   in  electromagnetic   theory   that   for  a  harmonic  varying 
» id) t 

field with a time dependence of the form € ,   the electric and the mag- 

netic vectors satisfy the following two equations. 

VxVxE-feE ■ i<^J 

VxVxH-feH = Vxj 

(1) 

(2) 

where J  denotes the electric current density function   In dealing with 

radiation from circulating currents it is convenient to introduce an 

equivalent magnetic current density function J  defined by 

V x j icoej (3) 

Equation   (2)   can  then  be  written   in  a   form similar   to Eq.    (1) 

V x V x H -  ft H    =    icoej (4) 

To integrate Eqs. (1) and (4) two dyadic Green's functions, denoted 

respectively by G  and G , are introduced.  They both satisfy the equation 

V x V x G - ft G = IS (*■ - x')  h{y  - y')   5 (z - z') (5)' 

where I denotes the unit dyadic or idem factor.  The electric dyadic 

Green's function satisfies the boundary condition that at the surface of 

a perfe- tly conducting body 

*Qe (6) 

In regard to notations mad in this papar . tha bold face typa ia used (or »actors; boldfaea 

type with a bar den ..is a dyadic. 

I 



while the magnetic dyadic Green's function is characterized by 

D X V x G — » (7) 

Once the explicit expressions of G  f»iid Gm  are knowrt, the formal solution 

for the electromagnetic field due to a given source in the presence of a 

perfectly conducting body can be presented in the form of certain inte- 

grals.  If the exciting source consists of current elements, the electric 

field is given by 

E - tofiSSS V.  ' G.dy' (8) 

If the source is made of apertures on the conducting body with a given 

electric field distribution, then 

E =   //   (E' * ■') • V x GedS' (9) 
ftperturet 

For the case of circulating currents as exciting sources, the magnetic 

field is given by 

H - \m US i'B • Gmdv'   . (10) 

The   corresponding  electric   field  is 

E " JIT V x  [JB . G]  dv' (11) 

Equations (8) - (11) constitute the basic formulae to be used in studying 

the radiation from current elements and apertures in the presence of a 

perfectly conducting body 

Let us now consider a perfectly conducting half-plane sheet as the 

diffracting body  The half-plane is defined by y  = 0 and X > 0 in the 

Cartesian coordinate system (Fig  1)   The longitudinal axis of the half 

plane is parallel to the Z-axis   For convenience  the entire X-\j  plane 

corresponding to Z  = 0 will be designated as the principal plane   The 

method used here to derive the dyadic Green's functions pertaining to this 

structure follows very closely the one described by Morse and Feshbach* in 

dealing with the interior boundary value problems of a circular cylinder. 

The main difference is that the spectrum of eigenvalues in the present 



problem is continuous both in the Z-coordinate and the r- coo .-dinate, where 

r is the cylindrical radial coordinate defined in the X-y  plane. 

Like all other cylindrical problems the elementary vector wave func- 

tions that are needed to construct G are of two kinds defined as follows: 

(12) 

(13) 

where i/> denotes an eigen function satisfying the scalar wave equation 

„2     2 
7 \p + ft \p    =    0 (14) 

The wave number ft  is, at this point, completely arbitrary.  The appropri- 

ate scalar eigen functions that will satisfy the boundary conditions on a 

half-plane sheet are 

*. U/2 )k 
(lh)    = e •»V (x r)  C0S f^) 

*N c      sin \ 2 y 
(15) 

with 

2      2    2 
\e = ft,- h 0, 1, 

In Eq. (15), J  (k r)   denotes the Bessel Function of order Ti/1,   and (r,<j>,z) 
1 

are the circular cylindrical coordinates.  The corresponding vector wave 

functions are then given by 

M, 4   lift) 
tai 

!(»/2)X 
(16a) 

•<»/2)\ 
O I 

-   *       /      \  sin /n<M , .      ,  cos /n<M #»-., 
+ — J {k r) [~) r - k J'{k r)     .      fUl       (16b) 

2r   }   '      cos     2 e -§•   e      sin V 2 / w\ 

N. k   (ift) #(../2)\ 

iki 
e     n 

*(n/2)\. 
(17a) 

'(n/t)k 
0 4 

^«    ,,      ,  cos 
 J (k r) 

ftc       Y sin V 2 j ker f
N  c      cos \ 2 / * 

e       .      .   cos /n<£\ 
+ — JAk.r) hri 

fte   f   •     sin \ 2 
(17b) 



Since the derivations of G^ and G are very similar, only the former will 

be considered in detail.  To express G  in terms of these vector wave 

functions, one needs only the M  and N  functions Secause they are the 

only functions that would satisfy the boundary condition stated by Eq. (6). 

In order to solve Eq. (5), using the method of orthogonal functions, the 

orthogonal property of the two sets of vector wave functions must first be 

established. 

Consider two arbitrary sets of eigenvalues denoted, respectively, t-y 

(n/2, \e, h)   and (n'/2, k'c,   h') .  It can easily be shown that 

f Jo 

f Jo 

-27T 

e i 

lo(„/2)\ * no(n'/2)\,d^  "  0 ' c c 

'a(B/2)\ ' ■«(n'/2)\'d<^  "  0 ' 

V n' (18) 

By applying the formula of Hankel that 

J0 kcd\c  J0 rdr JM(\V) Jß(kcr)   f(kt)    = f(k'c) (19) 

one finds that for PI ■ It' 

k dk 
c < 

0 

while 

f°° ,2TT 

rdr d4>  < 

o      -l o             I 

"e( n/2 )k t 

ne{n/2)kt 

2rr r,00 ,277 

kdkc J0   rdr j0     d4> 

(1 + S0) vk'e (20) 

o(»/2)\ '•(•/l)X' = 0 (21) 

In Eq. (20) n . •, .y i (- i/l) denotes the function no(ll/2)A.' wifch tne sign of 

th  reversed.  It may be remarked here that the normalization regarding 

these vector wave functions for the case in which the n's are even integers 

has been discussed by Stratton    The orthogonal relationship between 

n , /«)X  an<^ " ( '/2)k''   nowever> was not correctly established.  The two 

functions are, in general, not orthogonal with respect to 4>,   although they 



are orthogonal in the en*.ire domain of r, K   , and cf>\      To derive the ex- 

plicit expression for G  let us first expand the right side of Eq  (5) in 

terms of M . in\\   \\n)   and N , /2)k   *^W as follows. 

18 (x - x') Its - H')  S(z - *')  ■ 

f0kedx£dh J^[kn(-ih)  ■tC./l)Kt0« + B„(-^) N.<./a>\/tÄ>]     (22) 

where A and B  are two unknown functions to be determined.  The double 

integration contained in Eq. (22) indicates that the eigenvalues are con- 

tinuous both in the r and the z  coordinates.  Taking the scalar product 

of Eq. (22) with II ,^t/«»v'(~tA') and W .«'/• il'(""M') i respectively, and 

then integrating with respect to dv  over all space, one obtains 

W.l.'/2)k'c
(-ih,) r00           f 

>   = rdr 

• 0 

ein 

dz <S4> \<*. dh 

5[A-(-ih) M«(-/2)^
(ih) +B-^ift) N.(./t>\.<*«] 

(23) 

The prime functions at the left side of Eq. (23) are defined in the prime 

coordinates (r', 4>', z') .  The multiple integral contained in Eq. (23) 

can be simplified by making use of the orthogonal relations described by 

Eqs. (18) - (21), and the Fourier integral theorem 

to obtain 

f. dz  f. dh  [#'**** )zf(h)]     - Z-rrf(h') (24) 

(25) 

(26) 



hence, 

18 (x - x')   till - y')   Hz - z')     =    I0   dkc [mdh 

Z2 - S 

♦"Ic/tlK.«-«»)  N.(n/2)Xe(^)J 

To determine C one writes 

(27) 

-CD ,00 

(28) 

where C     is an unknown function of A.  and h.     The unknown function can be 
n c 

determined by substituting Eqs. (27) and (28) into Eq. (5) to obtain 

2   -   S, 

4n*k   (h2  + A.2  - k2) 
(29) 

and hence, 

(2   -   IJ 
dk dh 2        2 

-^ An k  {h    + X    -  h ) '- on ■= 0 e v c 

• [■;«./■*/-«*> M,u/2»,c(^) +w.(./t>x/-**) R.(./t>\.<^)] • es«» 

The integration with respect to kc  can be simplified by making use of the 

identity that 

f   Jn(ker
l)JH(kcr)f(kc) 

T      T 
2     2 

\  - k. 
dk. 

77 

Zik rw<i 

Jn(kr')H(
H
l)(kr).  r  > r' 

n        n 
T     7 

«M*r)l!l,(Xr')( r < r' n       n 
T    T 

(31) 

It is assumed that k  is the only pole of the integrand.  The final expres- 

sion of Qt   is therefore given by 



I' MQ     I       "" 

■■ 0 \ 

«:ü)i)\(-t« »lU/t>x<tft) ♦r.;i.;t,x<-t») <u/.,k<«j •r> r' (32a) 

where 

2    2 
ft - ft 

The superscripts (1) and (3) are the conventional notations for the two 

kinds of vector wave functions with different cylindrical functions. Thus, 

(1) 
C(II/2 )\ I = V x L1*' JAkr)  cos («2E.J z (33) 

(34) 

and similarly for the N functions 

In regard to the magnetic dyadic Green's function the deviation is 

practically the same.  Th~ only difference is that the vector functions 

M and N are now used to construct G so that the boundary condition 

stated by Eq. (7) is satisfied.  The final expression for G is therefore 

similar to that of G except that M and N in G are replaced by M and —«      r «        o     — e r '        o 
N     for G  .     Because  of  the  mutual   relationship   that 

* M 
'{•/t)k 

=    ft N 
[im/t)k 

(35) 

it is obvious that 

V x N 
*(n/2)\ o 

ft M 
*(*/t)k 

(36) 

and 

V x V' x G  = ft G 
—t     —• 

V x V H  G  - ft G 

(37) 

(38) 

With slight modifications the method described here can be used to derive 

the dyadic Green's functions pertaining to other cylindrical structures. 
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III  APPLICATION FOR THE DYADIC GREEN1S FUNCTIONS 
TO RADIATION FROM 01POLES AND APERTURES 
IN THE PRESENCE OF A HALF-PLANE SHEET 

Once the expressions for G  and G  are known the discussion of the 

radiation from given current elements or apertures with given field 

distribution reduces to that of evaluating some complex integrals.  In 

general, integrals of the type contained in Eqs. (8)-(ll) are difficult 

to evaluate.  However, for certain restricted ranges of the parameters, 

corresponding to the far-zone region, most of the integrals can be 

evaluated in a closed form.  Depending upon the nature of the exciting 

sources, the problems can most conveniently be divided into three groups: 

Radiation from Electric Dipoles 

Radiation from Magnetic Dipoles 

Radiation from Slots Cut in the Half-Plane Sheet 

A.  RADIAT.ON FROM ELECTRIC DIPOLES 

1.  LONGITUDINAL ELECTRIC DIPOLE 

Let us first consider an electric dipole with moment p    oriented 

along the direction of the longitudinal axis of the half-plane sheet. 

The dipole is placed at (O, <p  , 0).  The electric current density func- 

tion can be written as 

■tup    8(r -a)  8(<p - <p ) 8(z - 0) z (39) 

Substituting Eqs. (32a) ind (39) into Eq. (8), one finds that the longi- 

tudinal component of the electric field is given by 

A. e 
n- 1 

rM    (*P\ (i) 
sin  lain 1 —) Jn(ka) Hn     (\r) dh  .     (40) 

For large values of W?, where /?, b,   and <p  are the spherical coordinates 

of the point of observation, the complex integral continued in Eq  (40) 

i 



can be evaluated approximately by means of the saddle-poi.ni method of 

integration, with the result 

2 
U jjpt 

i *fl 

/.' 
sin b Z^ (-1 

•L 

)  sin 
TlU ngj 

sin I—JJn(ka  sin b)   .   (41) 

Because of the reciprocal relationship between the properties of trans- 

mitting and receiving antennas it can be inferred from Sommerfeld'a 

diffraction theory that one should be able to transform the series in 

Eq. (41) into certain Fresnel integrals which represent the original form 

of Sommerfeld's solution.  The transformation can be done either by 
6 

applying an expansion theorem due to Hargreaves  in connection with the 

half-order Bessel functions or by using an alternative method described 

by Morse and Feshbach .  It has been shown by these authors that if one 

writes 

S(P.*)  ■ -g-Y (2 - 8,) cos (-£) J>) 

the integral representation of the series is given by 

(42) 

S{p,q>)     -  (/T)
2
 e 

^-  ■■ i(pcom<t>+*) 
Tp    eo.(-f)    2 

ds (43) 

The integral contained in Eq  (43) can be transformed into the standard 

Fresnel integrals defined as follows. 

Cix) 
CO" t 

o (2irt)* 
■dt    ,      S(x) 

sin t 

Jo (2nt)* 
dt    . (44) 

8 , 9 
Adequate tabulations are available for these two functions      For 

numerical computation the following formula for S(p,<p)   is therefore more 

desirable 

S(p,<p) 

X     =  tell ♦ COS <p) 

i)  ±  [C(x)   + iS(x)] i- 
(45) 

10 



where the sign is fixed according to the range of <p 

\ 

Regarding S(p,^>)   as an "elementary" function, one can reduce Eq. (41) 

into the following form 

2       :kP. 

sin ü  [S (fro sin 6*,  <p-<p.)  -S (ka sin 6,  <p + cp0)] 
4/rff 

(46) 

In the principal plane, corresponding to b  ■ 90°, the radiation pattern of 

the Z-component of the electric field due to a longitudinal electric dipole 

in the presence of the half-plane sheet is therefore simply given by 

F{SM)    = S{Pa,  <p - $>0) ~ S(ka,  y  ♦ <pQ) (47) 

It is, of course, possible to obtain the same information regarding the 

radiation pattern from Sommerfeld's solution by applying the reciprocal 

theorem.  Equation (47) also contains the essential result obtained by 
10. 

Harrington,   concerning the radiation pattern of a line source in the 

presence of a half-plane sheet.  In fact the complex integral obtained 

by Harrington based upon the solution of the Hopf-Wiener integral equation 

can readily be reduced into Fresnel integrals 

For other orientations of the dipole, the derivation of the essential 

formulae concerning the radiation pattern in the principal plane is 

practically the same  The final results are summarized below. 

2. HORIZONTAL ELECTRIC DIPOLE (IN THE DIRECTION OF X-AXIS) 

t<M+) sin <p [S(!?a,  <p - <p )  - S{ka, <p + <pj] 

2 \*     ((».♦?) 
nkaj 

sin 
<Pn 

COS 

(48) 

11 



3.    VERTICAL ELECTRIC DIPOLE   (IN  THE DIRECTION  OF  Y-AXIS) 

F{E.)     =    cos «/>  [S(fra,   cp - <p.)  + S(ka,  9 * <pn)] '* 

/ 2 \*   <u«*f)      /M     /V 
      e *    cos cos  — \nkaj \?J        \2, 

(49) 

The patterns based upon Eqs. (47), (48), and (49), after being 

properly normalized, are plotted in Figs. 2, 3, and 4 for several 

different values of ka  and <p„ . 

B.  RADIATION FROM MAGNETIC DIPOLES 

1.  LONGITUDINAL MAGNETIC DIPOLE (IN THE DIRECTION OF Z-AXIS) 

F(i^)    = S(fe>, <P - <p0) + S(ka, <p * <p0) (50) 

2.  HORIZONTAL MAGNETIC DIPOLE (IN THE DIRECTION OF X-AXIS) 

f{i )    =    sin <p [S(Jto, <?-<?(,)  + S(ka, <p + <p0)] 

i-t \nkaj 
iU.+f) <A» <P cos I    sin , 

V 2/ V2 

(51) 

3.  VERTICAL MAGNETIC DIPOLE (IN THE DIRECTION OF Y-AXIS) 

F(E )    =    cos <p [S(ka, <p - <pa)  - S(ka, <p + <p0)] 

\rrkal 

2   \8      it*«**) 
e sin 

<P, « 1 cp 
—   sin  — 
2/ \2 

(52) 

As shown in the following section, when a longitudinal magnetic 

dipole or a horizontal magnetic dipole is placed at the half-plane sheet, 

the pattern is the same as that of a small longitudinal slot or a small 

horizontal slot cut in the sheet. 

12 



C.  RADIATION FROM APERTURES 

The electromagnetic field clue to apertures with given electric field 

distribution can be evaluated by applying Eq. (9)   The aperture can be 

excited either " one-sided" or "two sided."  In practice, the one-sided 

excitation corresponds to the aperture radiation from a waveguide ter- 

minated by a half-plane sheet.  If the opening on the sheet is ted by a 

two-wire transmission line or a coaxial transmission line the excitation 

would be two-sided.  Much useful information regarding the radiation field 

due to apertures can be gathered by considering the radiation from narrow 

slots. 

as 

E - f{z)  8(r - a) r (53) 

where f(z)   is a given function of Z depending upon the assumed field 

distribution along the slot.  For a one-sided excitation the far-zone 

field in the principal plane, obtained by substituting Eqs. (32a) and 

(53) into Eq. (9) and applying the saddle-point method of integration, is 

P^Bf)     -    S(*0, 9) (54) 

The pattern is the same as that of a longitudinal magnetic dipole when 

the latter is placed at the surface of the half-plane sheet corresponding 

to <pQ   =0 and at a distance P • 0   from the edge.  The corresponding formula 

for a two-sided excitation is 

P2(E(t))    = S(ka. <p) - S(ka,  2* ~ <p) 

i- i[  I oe o 10 + T i  r „    i 
,.,,    e *     [C(x) • iS(x)] , 

x ■ fea(l + cos <p) (55) 

2. HOHIZONTAL SLOT 

The radiation field due to a horizontal slot is somewhat more diffi- 

cult to evaluate.  Assuming that the field distribution in the slot is 

of the form 

13 

1  LONGITUDINAL SLOT 

The field distribution for a narrow longitudinal slot can be written 

_J 



fir) Hz - 0) £ (56) 

where f(r)   is a given function of P, then the far-zone field in the 

principal plane due to a one-sided slot is, in general, given by 

4/7/? 77?       \ 2 / . 
«lot 

f(r')Jn(br') 
 1 dr' (57) 

The integral contained in Eq. (57) cannot be evaluated in closed form 

unless the function f(r')   is a delta function so that the analysis applies 

to the proble.n of a very short slot or one of another class of functions 

discussed in a later section.  As present, let us consider the special 

case of a short slot.  Heplacing f(r')   in Eq. (57) by b(r'-a),   where a 

is the radial distance measured from the edge of the half-plane sheet 

to the small opening, one obtains 

n{-i)^Jn  (ka)  sin 
n<p 

e o 
=    ~ 7T T-S(ka'  *> 

The radiation pattern of a one-sided small horizontal slot in the 

principal plane is therefore given by 

(58) 

1  3 
F^EJ    = -T^- —S(ka,  cp) 

ika   B<p 

.(*.+?) 

sin <p S(ka, cp)  + 
(2/rfea) 

(59) 

The pattern is, of course, the same as that of a horizontal magnetic 

dipole placed at the surface of the sheet obtained by putting <pQ = 0 in 

Eq. (51).  The corresponding formula for a two-sided small horizontal 

slot is 

14 



Ff(If) - |iin9| e'lka ""'* [C(x)  ♦ I SWJ..wl+...#J 

ie 
i * a 

(ff*o) 

, 9 sin — 
4    U (60) 

Patterns based upon Eqs. (54), (55), and (60) are plotted in Figs. 5-8 

for several different values of ka. 
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IV     LOCATIONS  OF THE  MAXIMA   INÜ MINIMA 

OF THE RADIATION  PATTERN FOR SOURCES 

FAR AWAY FROM THE EDGE 

Since   extensive   tables   of   the   Fresnel   Integrals   are   available,   it 

is   possible   to  compute   the   radiation   patterns   corresponding   to   various 

excitations   for   practically   any   value   of  ka.      If   the   value   of  fro   is   large, 

the   pattern  exhibits  certain  distinct  properties       A typical   pattern   for 

a one-sided   longitudinal   slot   placed  a  distance  corresponding  to  ka  ■   30 

from tb»  *»dge   of   the   sheet   is   shown   in Fig.   9.     The   locations   of   the 

maxima  and  the  minima  of  such   a  pattern  can  be   ascertained   in  a   relatively 

simple  manner.      In   the  case  of   a  one-sided   longitudinal   slot,   the   extreme 

values   of   the  pattern   are   determined  by   the  condition 

BjS(fra,   »)| 
~dcp 

(61) 

Using the explicit expression of S(ka,   <p)   given by Eq. (45), one obtains 

tan x (62) 

where 

fra(l ♦ cos <p) 

The graphical solution for the roots of Eq. (62) is shown in Fig  10. 

Denoting these roots by X , one can see from Fig. 10 that the approximate 

solutions for the roots are given by 

x  -  (4M - 1) — 
4 

or 

COB <p (4m - 1) 1 m =  1,2, 
* 4fra 

(63) 
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Equation (63) determines the locations of the maxima when m's are odd 

integers.  Interlaced between the maxima are the minima corresponding 

to even integers of m.  Since the magnitude of S{ka,  <Pl)   and that of 

S(ka,   If) are independent of Pa,   their ratio 

S(fco, <t>x) 

S(ka,   n) 
0.426 (64) 

is therefore also independent of fra.  It is a measure of the rapidity of 

the decay of the field from the peak value to the value observed at the 

boundary between the shadow region and the illuminated region.  Similar 

discussions can be carried out for the fields set up by the other fpes 

of antennas considered above. 
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V RADIATION RESISTANCE OF ANTENNAS NEAR HALF PLANE SHEETS 
AND RADIATION CONDUCTANCE OF THE COMPLEMENTARY SLOTS 

In  this   section  we   will   discuss   the   radiation   resistance   of   a 

quarter  wave   monopole   attached  to  the   edge   of   a  half   plane   sheet      and 

that   of   a  half  wave  dipole   placed   in  front   of   the   sheet   with   its   axis 

parallel  t.c  the  edge   of   the   sheet   as   shown   in  Fig.    11   (a)   and   (b).     The 

complementary  problems   of   a   quarter   wave   slot   normal   to  the  edge   of   the 

sheet,   and   a  half   wave   slot   cut   in  the   sheet   parallel   to   the  edge     are 

shown   in  Fig.   11   (c)   and   (d).     Since   the  Babinet  Booker   relationship 

regarding  the   radiation   resistance  of  the  dipole   and  the   radiation con- 

ductance   of  the   complementary  slot   applies,   namely 

(65) 

whei 120n    ohms 

it   is   therefore   sufficient   for  our  purpose   to  present   only  the   detailed 

analysis   for   the   cases   involving  the   monopole   and   the   dijole. 

A.      QUARTER-WAVE   MONOPOLE   ATTACHED  TO   THE   EDGE  OF   A 
HALF-PLANE   SHEET 

To evaluate   the   radiation   resistance   of   the   monopole   for   this   case, 

the   method   of  Poynting-energy  theorem will   be   applied.      For   a  base   driven 

monopole   it  will  be   assumed   that   the   current   distribution   is   sinusoidal 

The   current   density  function to  be   used   in Eq.   (8)   can therefore  be 

written   in  the   form 

/„ cos Pr 
8 (z - 0)  i (<p - IT) 

(66) 

Using the expression of G given by Eq. (32a), and applying the method 

of saddle-point integration, one can obtain the explicit expression for 

the far-zone electric field.  Expressed in spherical coordinates, it is 

18 



E  . t9 a * t4 $ (67) 

Vhe 
ikn 

2nR 
= 1.3 

(t)'     *   sin(y-)  cot;  "   K_{i>) (67a) 

T7/0e 
i *» 

2nR 
,=l  . 3 

(t)T -   cosrt-i- fel   to) 
2/sin 6 V2 

(67b) 

where 

i to) 
T 

*    I ^n     ^r    Sln   ^    C0S    ^   dr 
Jo       T 

(68) 

I     to) 
T 

— dr 
*    J    (frr sin 6)  cos /?r — 
0 T r 

(69) 

The   functions  A"   (6)   and  I   (60   defined   in  Eqs      (68)   and   (69)   can be 
T T 

evaluated   in  terms   of  the   Fresnel   integrals.     They  are   tabulated   in the 

Appendix   for   n   ■   1   and  3.     Using  Eqs.   (67a)   and   (67b),   one   finds   that 

the   radiation  resistance   of  the  quarter-wave   monopole  defined  with  respect 

to  the   base   current   I0   is   given by 

Vh 

2-n " n 9 4 
2   (Ep   * fj R    sin 6 dödcp 

V 
2/7 

= 1 . 3 

i. to) 
in 

Vz 
2     __£_ 

sin 6 
d6 + 

—      2 2 2 iTBto)   cos 6 sin 0 do 
o     t 

(70) 

The integrals contained in Eq. (70) can only be evaluated numerically. 

(PI \2  2       1 2 2 
—  I to)   ard Ä  (ö) COS b  Sin © are plotted in 
2/  #   sin 0    £ 
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Fig.   12  for  n   -  I   and  3.     The  contributions   to R    by  terms  with  n   ■   5 

and   higher   are   negligible.     The   sum of   the   four   leading  terms  gives   a 

value  of R    equal   to   86  3   ohms.      It   is   interesting  to  observe   that,   the 

value   is  greater   than  the   free   space   radiation   resistance   of   a  half  wave 

dipole     namely   73   13  ohms.     For   a  quarter  wave  monopole  driven   against 

a ground plane,   the  radiation  resistance   is,   of  course     only   36  56 ohms. 

The   input   impedance   of   a  monopole   driven  against   a   large     but   finite, 

half   plane   sheet   has   been measured   experimentally       The   result   is  plotted 

in Fig.    13.     The   antenna   is   a  quarter  wavelength   long   at   a  frequency  of 

700  Mc.     The   input   resistance  of  the   antenna  at   this   frequency   is  around 

92   ohms.     It  confirms  the  calculated value  of R    within  the  experimental 

error. 

B       HALF-WAVE   DIPOLE   PLACED   PARALLEL  TO  THE   EDGE  OF   A 
HALF-PLANE   SHEET 

As   in  the  previous  case,   it   is   assumed  that  the  current  distribution 

on  the  dipole   is  sinusoidal.     The   current  density   function  to be  used  in 

Eq.   (8)   is 

I„ cos kz 
b(r - d)  &{q> - n) ^ 
  z (71) 

The   far-zone   field   in this   case  has  only one  component,   i.e..   Eg, 

Following  the  same  procedure   as  before,   one  obtains 

E. 
-vhe1"    cos 

nR sin 6 
» = 1 ,3 

(i)T J    (fed sin 6) sin (?) (72) 

The  radiation  resistance   of  the  dipole  can be   evaluated   according  to  the 

following   formula 

R 

Vh 

2TT 
2      2      2 

Ef, R    sin b ddd<p 

= ^Z 
11 = 1 ,3 

% 
j  cos  (— COS o 

sin b 
hi ■ J    (M sin 6) db (73) 
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The   integrals  contained   in F.q.    (73)  may be  evaluated   numerically  with 

the   ail   of   an   adequate   table   of   hall-order  Bessel   functions.     The   result 

is   plotted   in Fig.   14.      For   comparison,   the   radiation  resistance   of   a 

horizontal   half-wave   dipole   placed   above   a  ground   plane   is   also   plotted 

in   the   same   figure.     The   two  curves   are   seen  to   intersect   at   those   points 

when d   is   a  multiple  of   a   quarter   wavelength.      It   is   believed  that   the 

identity of the two ecjuations for radiation resistance could !je demonstrated at  these 

points without difficulty,  but such a demonstration has not been carried out.  Physically, 

however,   it  is difficult to explain why the two configurations yield the same radiation 

resistance,   since the  field distribution ol  tiie two structures are entirely different 

Our  discussion   on   the   radiation   resistance   of   a   half-wave   dipole   in 
11 

the   presence   of   a  half-plane   sheet   supplements   the   earlier   work  by   Kraus 

on  the   radiation  resistance   of   a  dipole  placed   in   a  corner   reflector.      A 

half-plane   sheet   is   structurally   a   limiting  case   of  corner   reflector   when 

the   angle   of   the   reflector   approaches   360  deg.      Using   the   dyadic   Green's 

function  pertaining  to   a perfectly conducting  wedge,   one  can,   indeed,   treat 

the  same  types   of  problems   as   have  been  discussed   here   for   a  half-plane 

sheet. 

As   a   conclusion  of   this   report   we   shall   consider   the   problem  of   the 

radiation  resistance  of   a  half-wave  dipole  placed   in   front   of   a  perfectly 

conducting  wedge   when  the   distance  between  the   dipole   and   the   edge   of   the 

wedge   is   small   compared   to   a  wavelength.     Ty  an  analysis   similar   to   that 

leading  to Eq.    (73),   the  general   formula   for   the   radiation  resistance  of 

the  dipole   in  this  case   may  be   shown  to  be 

4TJ 

2n-rp0 n = l ,3 

r£   cos <(|cce*) 

sin b 
J      (frd sin b) db ,74) 

»here 

(p0     =     angle   of   the  wedge 

nn 
2rr-cpn 

B  ■  1,  3 

Because of the lack of adequate tables of Bessel Functions c" arbitrary 

fractional order, the integrals in Eq. (74) cannot easily be evaluated 
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In the  case 

kd\2 V^i   +   2) 
<< 

/kd\ 

\2J r(Mi ♦ i) 

the   significant  part   in  Eq.   (74)   is  contributed  by the   leading  term of 

J     (frd  sin 6*) ,   which  is  given by 

J    (M sin e)    =  —, -r [—Pd sin &y 
^i r (/ij + l; \ 2 / 

(75) 

The   radiation  resistance  of  the  dipole   under   this   condition can be 

computed   from  the   following   formula: 

aOW)*"1 (76) 

»here 

480/^ 2 

2I'Vo*l • i) J 

2
(n \     , \2M,-1 cos I— cos 6 1   (sin 6)   1   dB 

The   index  2/u.j   and  the   constant  a  are  plotted  in Fig.   15,   as   a   function 

of   the  wedge   angle <p„.     When  2rr " (p.   - —with M   =   1,   2,    ...   the  wedge 
M 

becomes a regular corner reflector such that the method of images can be 

applied to determine the radiation field, and hence the radiation 

resistance, of the dipole as discussed by Kraus. 
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APPENDIX 

TUE   FUNCTIONS   I   id)   AND  /   (b) 
n n 
T T 

7 

T 

2 

(sin 6)'  1(1 +  sin tf) ■ 

1 +  sin b 

Bin 6 
COO 

(1 + sin b)^ 
1  ♦ 

'1 - sin 6 

v    sm 6 C(P. 

(sin 0)" 

-4  sin (— sin 6 

n sin b 

k (1 +  sin &)■     _ 

(1 - sin 6)* 

. 1  +  sm b\ I 1 +   sin 6 
•1-3   I )  + 2 

sin e sin b 
S(pJ 

sin 6 

„,rl - sm b\      m /l- sm fc\?   . 
1 - 31 —)  - 2 ( )    \S(p_)> , 

sin b j 
(sin fc) 
 r«(l ♦  sin 6)* C(p+)  - 2(1 - sin ö)A C(p )} 
.n e)* I J 

(i 
(sin (?) * 

8 sin   — sm b 

Zn sin 6 
+ 2(1 ♦ sin   (?) A 

2 /l + sm b\ 

3 \   sin 6   I 
S(PJ 

+ 2(1 - sin »)■ 
2 fl - sin 67 

1 +—     
3 \    sm b 

S(P.)> 
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where Sift)   and C (p)   are the Fresnel sine- and cosine-integrals 

arguments p+ and p_   ire defined as follows: 

The 

p+ = — (1 + sin b) 
16 

— (1 - sin e) 
2 

I 
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HALF-PLANE SHEET 

FIG.   I 

HALF-PLANE  SHEET 
A-59I-TR49-487 
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FIG.   2A 

RADIATION   PATTERN   OF   A   LONGITUDINAL   DIPOLE 
PLACED   IN   *RONT   OF   A   HALF-PLANE   SHEET 

D-S9I-TR4S-4M 
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FIG.    2B 

RADIATION   PATTERN   OF   A   LONGITUDINAL    DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

0-89I-TM5-4B9 
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FIG.    2C 

RADIATION   PATTERN   OF   A   LONGITUDINAL   DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE    SHEET 

D-B9S-TM5-490 
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Qe'4S",ka'4n 

FIG.    2D 

RADIATION   PATTERN   OF   A   LONGITUDINAL   DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

0-89I-TM8-49I 

31 



$0"l350,ka.f 0o*l35*,ko-^ 

♦o'ISö'.ko-rr *o*'35*,ka.2rr 
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FIG.    2E 

RADIATION   PATTERN   OF   A   LONGITUDINAL   DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

D-S9I-TMS-492 
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FIG.    2F 

RADIATION   PATTERN   OF   A   LONGITUDINAL    DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

0-99I-TR45-493 
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FIG.    3A 

RADIATION   PATTERN   OF   A   HORIZONTAL    DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

0-59I-TR4S-494 
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FIG.   3B 

RADIATION   PATTERN   OF   A    HORIZONTAL    DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE    SHEET 

D-59I-TR49-495 
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♦o-IO*. ka ■ n ♦,-IS\ko-2 n 

♦o-IS*, ka»4rr 

FIG.    3C 

RADIATION   PATTERN   OF   A   HORIZONTAL    DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

D-59I-TR48-49« 
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FIG.   30 

RADIATION   PATTERN   OF   A   HORIZONTAL    DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

D-59I-TR45-497 
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FIG.    3E 

RADIATION   PATTERN   OF   A   HORIZONTAL    DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

D-59I-TR«   -4M 

38 



♦O.l80\ko.£ 0O«I8O\ ko • IT 

FIG.   3F 

RADIATION   PATTERN   OF   A   HORIZONTAL    DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

C-S9I-TR4S-499 
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FIG.    4A 

RADIATION   PATTERN    OF    A   VERTICAL    DIPOLE 
PLACED    IN   FRONT   OF   A   HALF-PLANE   SHEET ^ ^ 
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FIG.    4B 

RADIATION   PATTERN   OF    A   VERTICAL    DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

0-59I-TR4B-5OI 

i 
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FIG.   4C 

RADIATION   PATTERN   OF   A   VERTICAL   DIPOLE 
PLACED   IN   FRONT   OF   A   HALF-PLANE   SHEET 

D-59I-TR45-502 
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FIG.   5 

RADIATION   PATTERN  OF  A   ONE-SIDED   LONGITUDINAL   SLOT 
0-59I-TM5-B03 
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FIG.    6 

RADIATION   PATTERN   OF   A   TWO-SIDED   LONGITUDINAL    SLOT 
D-59I-TR49-504 
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FIG.    7 

RADIATION   PATTERN   OF   A   SMALL   ONE-SIDED   HORIZONTAL   APERTURE 
D-S9I-TM5-50S 
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FIG.   B 

RAOIATION   PATTERN   OF   A   SMALL   TWO-SIDED   HORIZONTAL   APERTURE 
D-59I-TR45-506 
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